Gene transfer of parvalbumin improves diastolic dysfunction in senescent myocytes.
نویسندگان
چکیده
BACKGROUND Impaired relaxation is a cardinal feature of senescent myocardial dysfunction. Recently, adenoviral gene transfer of parvalbumin, a small calcium-buffering protein found exclusively in skeletal muscle and neurons, has been shown to improve cardiomyocyte relaxation in disease models of diastolic dysfunction. The goal of this study was to investigate whether parvalbumin gene transfer could reverse diastolic dysfunction in senescent cardiomyocytes. METHODS AND RESULTS Myocytes were isolated from senescent (26 months) and adult (6 months) F344/BN hybrid rats and were infected with Ad.Parv.GFP (where GFP is green fluorescent protein) or Ad.betagal.GFP at a multiplicity of infection of 250 for 48 hours. Uninfected senescent and adult myocytes served as controls. After stimulation at a frequency of 0.5 Hz, intracellular calcium transients and myocyte contractility were measured using dual excitation spectrofluorometry and video-edge detection system (Ionoptix). Parvalbumin significantly improved relaxation parameters in senescent myocytes: Both the rate of calcium transient decay and the rate of myocyte relengthening were dramatically increased in senescent cardiac myocytes transduced with parvalbumin compared with nontransduced and GFP-expressing controls, with no effect on myocyte shortening. CONCLUSIONS Parvalbumin expression corrects impaired relaxation in aging myocytes. Given that abnormalities of myocyte relaxation underlie diastolic dysfunction in a large proportion of elderly patients with heart failure, gene transfer of parvalbumin may thus be a novel approach to target diastolic dysfunction in senescent myocardium.
منابع مشابه
Parvalbumin gene transfer corrects diastolic dysfunction in diseased cardiac myocytes.
Heart failure frequently involves diastolic dysfunction that is characterized by a prolonged relaxation. This prolonged relaxation is typically the result of a decreased rate of intracellular Ca(2+) sequestration. No effective treatment for this decreased Ca(2+) sequestration rate currently exists. As an approach to possibly correct diastolic dysfunction, we hypothesized that expression of the ...
متن کاملComparative analysis of parvalbumin and SERCA2a cardiac myocyte gene transfer in a large animal model of diastolic dysfunction.
Diastolic dysfunction results from impaired ventricular relaxation and is an important component of human heart failure. Genetic modification of intracellular calcium-handling proteins may hold promise to redress diastolic dysfunction; however, it is unclear whether other important aspects of myocyte function would be compromised by this approach. Accordingly, a large animal model of humanlike ...
متن کاملParvalbumin: Targeting calcium handling in cardiac diastolic dysfunction.
Diastolic heart failure (DHF) is a clinical syndrome characterized by depressed myocardial relaxation performance and poor ventricular refilling. Defective intracellular calcium (Ca(2+)) handling underlies one of the fundamental mechanisms of DHF. Manipulating the content and function of Ca(2+) handling proteins in the heart has been the focus of intense study to develop effective therapies for...
متن کاملParvalbumin isoforms differentially accelerate cardiac myocyte relaxation kinetics in an animal model of diastolic dysfunction.
The cytosolic Ca(2+)/Mg(2+)-binding protein alpha-parvalbumin (alpha-Parv) has been shown to accelerate cardiac relaxation; however, beyond an optimal concentration range, alpha-Parv can also diminish contractility. Mathematical modeling suggests that increasing Parv's Mg(2+) affinity may lower the effective concentration of Parv ([Parv]) to speed relaxation and, thus, limit Parv-mediated depre...
متن کاملParvalbumin corrects slowed relaxation in adult cardiac myocytes expressing hypertrophic cardiomyopathy-linked alpha-tropomyosin mutations.
Hypertrophic cardiomyopathy mutations A63V and E180G in alpha-tropomyosin (alpha-Tm) have been shown to cause slow cardiac muscle relaxation. In this study, we used two complementary genetic strategies, gene transfer in isolated rat myocytes and transgenesis in mice, to ascertain whether parvalbumin (Parv), a myoplasmic calcium buffer, could correct the diastolic dysfunction caused by these mut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 109 22 شماره
صفحات -
تاریخ انتشار 2004